Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Periodontal Res ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501307

RESUMO

OBJECTIVE: This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND: Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS: Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS: Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS: Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.

2.
J Am Chem Soc ; 146(14): 9790-9800, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38549219

RESUMO

HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.


Assuntos
Simulação de Dinâmica Molecular , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/química , Proteínas Proto-Oncogênicas c-mdm2/química , Ligação Proteica , Espectroscopia de Ressonância Magnética
3.
Clin Nucl Med ; 49(3): 242-243, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306376

RESUMO

ABSTRACT: A 56-year-old man was born to consanguineous parents. He experienced slow-progressing sensory disturbances in the upper extremities. T1-weighted images showed cerebellar atrophy. 123I-IMP SPECT revealed reduced cerebral blood flow in the cerebellum. 123I-FP-CIT SPECT showed low uptake of dopamine transporter in the bilateral tail of the striatum. 123I-MIBG scintigraphy shows a decreased heart-to-mediastinum ratio. Flanking polymerase chain reaction suggested biallelic repeat expansion in intron 2 of RFC1, and subsequent repeat-primed polymerase chain reaction revealed ACAGG repeat expansion. Thus, he was diagnosed as cerebellar ataxia with neuropathy and vestibular areflexia syndrome.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Masculino , Humanos , Pessoa de Meia-Idade , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Proteína de Replicação C/genética , Vestibulopatia Bilateral/diagnóstico , Cerebelo , Síndrome
4.
Sci Rep ; 14(1): 3792, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360913

RESUMO

In onion thrips Thrips tabaci, reduced sensitivity of the sodium channel caused by several sodium channel mutations have been correlated with pyrethroid resistance. For this study, using mitochondrial cytochrome c oxidase subunit I gene sequences, we examined the phylogenetic relation among a total of 52 thelytokous and arrhenotokous strains with different genotypes of the sodium channel mutations. Then, we used flow cytometry to estimate their ploidy. Results showed that the strains are divisible into three groups: diploid thelytoky, triploid thelytoky, and diploid arrhenotoky. Using 23 whole genome resequencing data obtained from 20 strains out of 52, we examined their genetic relation further using principal component analysis, admixture analysis, and a fixation index. Results showed that diploid and triploid thelytokous groups are further classifiable into two based on the sodium channel mutations harbored by the respective group members (strains). The greatest genetic divergence was observed between thelytokous and arrhenotokous groups with a pair of T929I and K1774N. Nevertheless, they shared a genomic region with virtually no polymorphism around the sodium channel gene loci, suggesting a hard selective sweep. Based on these findings, we discuss the evolutionary origin and distribution of the sodium channel mutations in T. tabaci.


Assuntos
Tisanópteros , Animais , Cebolas , Filogenia , Triploidia , Aminoácidos/metabolismo , Mutação , Canais de Sódio/metabolismo
5.
J Biosci Bioeng ; 137(4): 304-312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296748

RESUMO

To optimize rapidly the medium for green fluorescent protein expression by Escherichia coli with an introduced plasmid, pRSET/emGFP, a single-cycle optimization pipeline was applied. The pipeline included a deep neural network (DNN) and mathematical optimization algorithms with simultaneous optimization of 18 medium components. To evaluate the DNN data sampling method, two methods, orthogonal array (OA) and Latin hypercube sampling (LHS), were used to design 64 initial media for each sampling method. The OA- and LHS-based data sampling resulted in green fluorescent protein fluorescence intensities of 0.088 × 103-1.85 × 104 and 3.30 × 103-1.50 × 104, respectively. Fifty DNN models were built using the OA and LHS datasets. Hold-out validation was performed using 15 % test of OA and LHS data. Mean square errors of the DNN models were 0.015-0.64, indicating the estimation accuracies were sufficient. However, the sensitivities of components in the DNN models varied and were grouped into six major classes by the index of k-means clustering. A representative model was selected for each class. Mathematical optimization algorithms using Bayesian optimization and genetic algorithm were applied to the representative models, and representative optimized medium (OM) compositions were selected by k-means clustering from the proposed OMs. A total of 54 OMs were obtained from the OA and LHS datasets. In the validating cultivation, the best OMs of OA and LHS were 2.12-fold and 2.13-fold higher, respectively, than those of the learning data.


Assuntos
Escherichia coli , Redes Neurais de Computação , Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Teorema de Bayes , Algoritmos
6.
J Pineal Res ; 76(1): e12934, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241676

RESUMO

Melatonin is a molecule ubiquitous in nature and involved in several physiological functions. In the brain, melatonin is converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and then to N1-acetyl-5-methoxykynuramine (AMK), which has been reported to strongly enhance long-term object memory formation. However, the synthesis of AMK in brain tissues and the underlying mechanisms regarding memory formation remain largely unknown. In the present study, young and old individuals from a melatonin-producing strain, C3H/He mice, were employed. The amount of AMK in the pineal gland and plasma was very low compared with those of melatonin at night; conversely, in the hippocampus, the amount of AMK was higher than that of melatonin. Indoleamine 2, 3-dioxygenase (Ido) mRNA was expressed in multiple brain tissues, whereas tryptophan 2,3-dioxygenase (Tdo) mRNA was expressed only in the hippocampus, and its lysate had melatonin to AFMK conversion activity, which was blocked by the TDO inhibitor. The expression levels of phosphorylated cAMP response element binding protein (CREB) and PSD-95 in whole hippocampal tissue were significantly increased with AMK treatment. Before increasing in the whole tissue, CREB phosphorylation was significantly enhanced in the nuclear fraction. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that downregulated genes in hippocampus of old C3H/He mice were more enriched for long-term potentiation (LTP) pathway. Gene set enrichment analysis showed that LTP and neuroactive receptor interaction gene sets were enriched in hippocampus of old mice. In addition, Ido1 and Tdo mRNA expression was significantly decreased in the hippocampus of old mice compared with young mice, and the decrease in Tdo mRNA was more pronounced than Ido1. Furthermore, there was a higher decrease in AMK levels, which was less than 1/10 that of young mice, than in melatonin levels in the hippocampus of old mice. In conclusion, we first demonstrated the Tdo-related melatonin to AMK metabolism in the hippocampus and suggest a novel mechanism of AMK involved in LTP and memory formation. These results support AMK as a potential therapeutic agent to prevent memory decline.


Assuntos
Melatonina , Camundongos , Animais , Melatonina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosforilação , Camundongos Endogâmicos C3H , Cinuramina/metabolismo , Envelhecimento , Hipocampo/metabolismo , RNA Mensageiro/metabolismo
7.
Neurogenetics ; 25(1): 3-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882972

RESUMO

Sphingomyelin phosphodiesterase 4 (SMPD4) encodes a member of the Mg2+-dependent, neutral sphingomyelinase family that catalyzes the hydrolysis of the phosphodiester bond of sphingomyelin to form phosphorylcholine and ceramide. Recent studies have revealed that biallelic loss-of-function variants of SMPD4 cause syndromic neurodevelopmental disorders characterized by microcephaly, congenital arthrogryposis, and structural brain anomalies. In this study, three novel loss-of-function SMPD4 variants were identified using exome sequencing (ES) in two independent patients with developmental delays, microcephaly, seizures, and brain structural abnormalities. Patient 1 had a homozygous c.740_741del, p.(Val247Glufs*21) variant and showed profound intellectual disability, hepatomegaly, a simplified gyral pattern, and a thin corpus callosum without congenital dysmorphic features. Patient 2 had a compound heterozygous nonsense c.2124_2125del, p.(Phe709*) variant and splice site c.1188+2dup variant. RNA analysis revealed that the c.1188+2dup variant caused exon 13 skipping, leading to a frameshift (p.Ala406Ser*6). In vitro transcription analysis using minigene system suggested that mRNA transcribed from mutant allele may be degraded by nonsense-mediated mRNA decay system. He exhibited diverse manifestations, including growth defects, muscle hypotonia, respiratory distress, arthrogryposis, insulin-dependent diabetes mellitus, sensorineural hearing loss, facial dysmorphism, and various brain abnormalities, including cerebral atrophy, hypomyelination, and cerebellar hypoplasia. Here, we review previous literatures and discuss the phenotypic diversity of SMPD4-related disorders.


Assuntos
Artrogripose , Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Microcefalia/genética , Artrogripose/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Cerebelo
8.
J Hum Genet ; 69(2): 91-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102195

RESUMO

More than half of cases with suspected genetic disorders remain unsolved by genetic analysis using short-read sequencing such as exome sequencing (ES) and genome sequencing (GS). RNA sequencing (RNA-seq) and long-read sequencing (LRS) are useful for interpretation of candidate variants and detection of structural variants containing repeat sequences, respectively. Recently, adaptive sampling on nanopore sequencers enables target LRS more easily. Here, we present a Japanese girl with premature chromatid separation (PCS)/mosaic variegated aneuploidy (MVA) syndrome. ES detected a known pathogenic maternal heterozygous variant (c.1402-5A>G) in intron 10 of BUB1B (NM_001211.6), a known responsive gene for PCS/MVA syndrome with autosomal recessive inheritance. Minigene splicing assay revealed that almost all transcripts from the c.1402-5G allele have mis-splicing with 4-bp insertion. GS could not detect another pathogenic variant, while RNA-seq revealed abnormal reads in intron 2. To extensively explore variants in intron 2, we performed adaptive sampling and identified a paternal 3.0 kb insertion. Consensus sequence of 16 reads spanning the insertion showed that the insertion consists of Alu and SVA elements. Realignment of RNA-seq reads to the new reference sequence containing the insertion revealed that 16 reads have 5' splice site within the insertion and 3' splice site at exon 3, demonstrating causal relationship between the insertion and aberrant splicing. In addition, immunoblotting showed severely diminished BUB1B protein level in patient derived cells. These data suggest that detection of transcriptomic abnormalities by RNA-seq can be a clue for identifying pathogenic variants, and determination of insert sequences is one of merits of LRS.


Assuntos
Transtornos Cromossômicos , Sítios de Splice de RNA , Splicing de RNA , Feminino , Humanos , Íntrons/genética , Sequenciamento do Exoma , Splicing de RNA/genética , Sequência de Bases , Análise de Sequência de RNA , Mosaicismo
9.
Hum Genome Var ; 10(1): 30, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993422

RESUMO

Neurofibromatosis type 1 (NF1) is one of the most common hereditary neurocutaneous disorders. Here, we report a unique case of a patient with typical NF1 findings and infantile spasms who had three possibly pathogenic de novo variants, c.3586C>T, p.(Leu1196Phe) and c.3590C>T, p.(Ala1197Val) in NF1 located in cis and c.1042G>C, p.(Ala348Pro) in GABBR1. This study contributes to our understanding of the effect of two cis variants on NF1 phenotypes and GABBR1-related neuropsychiatric disorders.

10.
Sci Rep ; 13(1): 17479, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838818

RESUMO

Machine learning tools have demonstrated viability in visualizing pain accurately using vital sign data; however, it remains uncertain whether incorporating individual patient baselines could enhance accuracy. This study aimed to investigate improving the accuracy by incorporating deviations from baseline patient vital signs and the concurrence of the predicted artificial intelligence values with the probability of critical care pain observation tool (CPOT) ≥ 3 after fentanyl administration. The study included adult patients in intensive care who underwent multiple pain-related assessments. We employed a random forest model, utilizing arterial pressure, heart rate, respiratory rate, gender, age, and Richmond Agitation-Sedation Scale score as explanatory variables. Pain was measured as the probability of CPOT scores of ≥ 3, and subsequently adjusted based on each patient's baseline. The study included 10,299 patients with 117,190 CPOT assessments. Of these, 3.3% had CPOT scores of ≥ 3. The random forest model demonstrated strong accuracy with an area under the receiver operating characteristic curve of 0.903. Patients treated with fentanyl were grouped based on CPOT score improvement. Those with ≥ 1-h of improvement after fentanyl administration had a significantly lower pain index (P = 0.020). Therefore, incorporating deviations from baseline patient vital signs improved the accuracy of pain visualization using machine learning techniques.


Assuntos
Inteligência Artificial , Estado Terminal , Adulto , Humanos , Cuidados Críticos/métodos , Estado Terminal/terapia , Fentanila , Unidades de Terapia Intensiva , Dor/diagnóstico , Estudos Retrospectivos
11.
Front Genet ; 14: 1221745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614820

RESUMO

Megalencephaly-capillary malformation syndrome (MCAP, OMIM # 602501) is caused by hyperactivity of the thephosphoinositide-3-kinase (PI3K)-Vakt murine thymoma viral oncogene homolog (AKT)-mammalian target of rapamycin (mTOR) pathway, which results in megalencephaly, capillary malformations, asymmetrical overgrowth, and connective tissue dysplasia. Herein, we report the case of a 7-month-old girl with MCAP due to a PIK3CA somatic mosaic variant who presented with atrial tachycardia, finally diagnosed as pulmonary arterial hypertension (PAH). Oxygen therapy and sildenafil decreased pulmonary blood pressure and improved atrial tachycardia. Previous studies reported an association between the PI3K/AKT/mTOR pathway and abnormal pulmonary arterial smooth muscle cell proliferation, which may be associated with PAH. PAH should be considered a potentially lethal complication in MCAP patients, even when no structural cardiac abnormalities are identified in the neonatal period.

12.
Data Brief ; 49: 109361, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37496521

RESUMO

Deep ocean water (DOW) is the water obtained from depth of >200 m below the surface of Earth's oceans and is characterized by rich nutrients and cleanliness [1,2]. We have recently reported that DOW suppresses the high-density-induced increase of plasma cortisol levels (i.e., a stress marker) in Japanese flounder (Paralichthys olivaceus) [1]. The current study aimed to examine whether the cortisol-reducing effect of DOW was observed in other marine organisms as well by comparing the plasma cortisol levels of nibbler fish Girella punctata reared under high-density conditions between surface seawater (SSW) and DOW. The nibbler fish were caught from Tsukumo Bay of Noto Peninsula (Ishikawa Prefecture, Japan). The DOW was obtained from seawater 320 m below the Noto Bay surface at a facility (Aquas Noto, Ishikawa Prefecture, Japan), whereas SSW was obtained from Tsukumo Bay (Noto Peninsula, Ishikawa Prefecture). The dissolved oxygen was maintained at approximately 7 mg/L in DOW as well as in SSW. Before they were transferred to the high-density condition, nibbler fish were acclimated in SSW at 20°C for 1 week at a mean density of 100 g/62.5 L. To expose them to the high-density stress, each of fish was kept at a density of 10 kg/m3 in a single aquarium (60 × 25 × 30 cm) containing either SSW or DOW (n = 8). Subsequently, the fish were reared with SSW or DOW for 10 days at 20°C ± 1°C under a 12:12-h light-dark cycle. A heparin containing syringe was used to obtain the blood samples from the caudal vessels of the fish anesthetized with a 0.04% 2-phenoxyethanol (FUJIFILM Wako Pure Chemical Corporation). The blood sampling was performed on days 0, 5, and 10 after rearing in the small aquaria. The plasma samples were prepared from the collected blood by centrifuging it at 5200 × g for 5 min and the cortisol concentrations were determined using an enzyme-linked immunosorbent assay (ELISA) kit (Cosmo Bio Co. Ltd., Tokyo, Japan) from those samples. The plasma cortisol concentration of nibbler fish reared in SSW on day 10 was significantly higher than that on day 0, whereas those reared in DOW did not show significant difference on the respective days. The current data contributes to the generalization of the cortisol-reducing effect of DOW on fish, which has been proposed in Japanese flounder [1]. These data could be used for developing and designing experiments to analyze the mechanisms underlying the cortisol-reducing effects by using small fish such as zebrafish, a well-established animal model.

13.
ACS Sens ; 8(7): 2889-2895, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318827

RESUMO

Wearable ion sensors for the real-time monitoring of sweat biomarkers have recently attracted increasing research attention. Here, we fabricated a novel chloride ion sensor for real-time sweat monitoring. The printed sensor was heat-transferred onto nonwoven cloth, allowing for easy attachment to various types of clothing, including simple garments. Additionally, the cloth prevents contact between the skin and the sensor and acts as a flow path. The change in the electromotive force of the chloride ion sensor was -59.5 mTV/log CCl-. In addition, the sensor showed a good linear relationship with the concentration range of chloride ions in human sweat. Moreover, the sensor displayed a Nernst response, confirming no changes in the film composition due to heat transfer. Finally, the fabricated ion sensors were applied to the skin of a human volunteer subjected to an exercise test. In addition, a wireless transmitter was combined with the sensor to wirelessly monitor ions in sweat. The sensors showed significant responses to both sweat perspiration and exercise intensity. Thus, our research demonstrates the potential of using wearable ion sensors for the real-time monitoring of sweat biomarkers, which could significantly impact the development of personalized healthcare.


Assuntos
Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Cloretos , Temperatura Alta , Biomarcadores , Impressão Tridimensional
14.
Front Endocrinol (Lausanne) ; 14: 1173113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288290

RESUMO

Melatonin, a neurohormone nocturnally produced by the pineal gland, is known to regulate the circadian rhythm. It has been recently reported that variants of melatonin receptors are associated with an increased risk of hyperglycemia and type 2 diabetes, suggesting that melatonin may be involved in the regulation of glucose homeostasis. Insulin is a key hormone that regulates circulating glucose levels and cellular metabolism after food intake in many tissues, including the brain. Although cells actively uptake glucose even during sleep and without food, little is known regarding the physiological effects of nocturnal melatonin on glucose homeostasis. Therefore, we presume the involvement of melatonin in the diurnal rhythm of glucose metabolism, independent of insulin action after food intake. In the present study, goldfish (Carassius auratus) was used as an animal model, since this species has no insulin-dependent glucose transporter type 4 (GLUT4). We found that in fasted individuals, plasma melatonin levels were significantly higher and insulin levels were significantly lower during the night. Furthermore, glucose uptake in the brain, liver, and muscle tissues also significantly increased at night. After intraperitoneal administration of melatonin, glucose uptake by the brain and liver showed significantly greater increases than in the control group. The administration of melatonin also significantly decreased plasma glucose levels in hyperglycemic goldfish, but failed to alter insulin mRNA expression in Brockmann body and plasma insulin levels. Using an insulin-free medium, we demonstrated that melatonin treatment increased glucose uptake in a dose-dependent manner in primary cell cultures of goldfish brain and liver cells. Moreover, the addition of a melatonin receptor antagonist decreased glucose uptake in hepatocytes, but not in brain cells. Next, treatment with N1-acetyl-5-methoxykynuramine (AMK), a melatonin metabolite in the brain, directly increased glucose uptake in cultured brain cells. Taken together, these findings suggest that melatonin is a possible circadian regulator of glucose homeostasis, whereas insulin acquires its effect on glucose metabolism following food intake.


Assuntos
Diabetes Mellitus Tipo 2 , Melatonina , Animais , Melatonina/metabolismo , Carpa Dourada/fisiologia , Glucose/metabolismo , Encéfalo/metabolismo
15.
Sci Rep ; 13(1): 8700, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248272

RESUMO

Deep ocean water (DOW) exerts positive effects on the growth of marine organisms, suggesting the presence of unknown component(s) that facilitate their aquaculture. We observed that DOW suppressed plasma cortisol (i.e., a stress marker) concentration in Japanese flounder (Paralichthys olivaceus) reared under high-density condition. RNA-sequencing analysis of flounder brains showed that when compared to surface seawater (SSW)-reared fish, DOW-reared fish had lower expression of hypothalamic (i.e., corticotropin-releasing hormone) and pituitary (i.e., proopiomelanocortin, including adrenocorticotropic hormone) hormone-encoding genes. Moreover, DOW-mediated regulation of gene expression was linked to decreased blood cortisol concentration in DOW-reared fish. Our results indicate that DOW activated osteoblasts in fish scales and facilitated the production of Calcitonin, a hypocalcemic hormone that acts as an analgesic. We then provide evidence that the Calcitonin produced is involved in the regulatory network of genes controlling cortisol secretion. In addition, the indole component kynurenine was identified as the component responsible for osteoblast activation in DOW. Furthermore, kynurenine increased plasma Calcitonin concentrations in flounders reared under high-density condition, while it decreased plasma cortisol concentration. Taken together, we propose that kynurenine in DOW exerts a cortisol-reducing effect in flounders by facilitating Calcitonin production by osteoblasts in the scales.


Assuntos
Linguado , Neuropeptídeos , Animais , Linguado/genética , Hidrocortisona/metabolismo , Cinurenina/metabolismo , Calcitonina/genética , Calcitonina/metabolismo , Hipófise/metabolismo , Neuropeptídeos/metabolismo , Água/metabolismo
16.
Sci Rep ; 13(1): 6299, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072482

RESUMO

Beard worms from the family Siboglinidae, are peculiar animals and are known for their symbiotic relationships with sulfur bacteria. Most Siboglinids inhabit the deep-sea floor, thus making difficult to make any observations in situ. One species, Oligobrachia mashikoi, occurs in the shallow depths (24.5 m) of the Sea of Japan. Taking advantage of its shallow-water habitat, the first ecological survey of O. mashikoi was performed over a course of 7 years, which revealed that its tentacle-expanding behavior was dependent on the temperature and illuminance of the sea water. Furthermore, there were significantly more O. mashikoi with expanding tentacles during the nighttime than during the daytime, and the prevention of light eliminated these differences in the number of expending tentacles. These results confirmed that the tentacle-expanding behavior is controlled by environmental light signals. Consistent with this, we identified a gene encoding a photoreceptor molecule, neuropsin, in O. mashikoi, and the expression thereof is dependent on the time of day. We assume that the described behavioral response of O. mashikoi to light signals represent an adaptation to a shallow-water environment within the predominantly deep-sea taxon.


Assuntos
Poliquetos , Água , Animais , Água do Mar , Adaptação Fisiológica , Ecossistema , Filogenia
17.
J Biosci Bioeng ; 135(2): 127-133, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586793

RESUMO

To improve synthetic media for protein expression in Escherichia coli, a strategy using deep neural networks (DNN) and Bayesian optimization was performed in this study. To obtain training data for a deep learning algorithm, E. coli harvesting a plasmid pRSET/emGFP, which introduces the green fluorescence protein (GFP), was cultivated in 81 media designed using a Latin square in deepwell-scale cultivation. The media were composed of 31 components with three levels. The resultant GFP fluorescence intensities were evaluated using a fluorescence spectrometer, and the intensities were in the range 2.69-7.99 × 103. A deep neural network model was used to estimate the GFP fluorescence intensities from the culture media compositions, and accuracy was evaluated using cross-validation with 15% test data. Bayesian optimization using the best DNN model was used to calculate 20 representative compositions optimized for GFP expression. According to the validating cultivation, the simulated GFP expression levels included large errors between the estimated and experimental data. The DNN model was retrained using data from the validating cultivation, and secondary estimations were performed. The secondary estimations fit the corresponding experimental data well, and the best GFP fluorescence intensity was 1.4-fold larger than the best of the initial test composition.


Assuntos
Aprendizado Profundo , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Teorema de Bayes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Escherichia coli/metabolismo
19.
Acta Neuropathol ; 145(2): 235-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512060

RESUMO

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.


Assuntos
Miopatias Distais , Proteínas de Choque Térmico HSP40 , Animais , Camundongos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Músculo Esquelético/patologia , Chaperonas Moleculares/genética , Debilidade Muscular/patologia , Miopatias Distais/patologia , Camundongos Knockout
20.
JGH Open ; 7(12): 959-965, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38162848

RESUMO

Background and Aim: In this retrospective study, we evaluated the effects of pemafibrate treatment in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertriglyceridemia using non-invasive stiffness-based models, including magnetic resonance elastography (MRE) combined with the fibrosis-4 (FIB-4) (MEFIB) index and the magnetic resonance imaging (MRI)-aspartate aminotransferase (AST) (MAST) score. Methods: In total, 179 patients with MASLD treated with pemafibrate were enrolled. We evaluated the effects of 48-week pemafibrate treatment using the MEFIB index, which classifies patients based on the combination of liver stiffness measurement (LSM) on MRE and FIB-4 and the MAST score, which is calculated based on LSM on MRE, MRI-proton density fat fraction (MRI-PDFF), and AST levels. Results: Pemafibrate treatment led to significant reduction in AST, alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT) (P = 0.011, <0.001, and <0.001, respectively) and significant improvements in triglyceride and high-density lipoprotein cholesterol levels (P < 0.001 and <0.001, respectively). The MRI-PDFF values were not significantly altered. However, a significant decrease in LSM on MRE was detected (P = 0.003). Evaluation of fibrosis using the MEFIB index and MAST score demonstrated significant improvement (P = 0.004 and <0.001, respectively). Changes in the MAST score showed positive correlation with changes in ALT and GGT levels (r = 0.821, P < 0.001, and r = 0.808, P < 0.001, respectively). Additionally, ALT and GGT levels at baseline were significantly associated with improvements in the MAST score (P < 0.001 and <0.001, respectively). Conclusion: Pemafibrate led to improvements in the MEFIB index and MAST score, as well as liver function. It is a promising therapeutic agent for patients with MASLD and hypertriglyceridemia with the potential to reduce liver-related events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...